Szukaj na tym blogu

piątek, 14 grudnia 2018

Elektromagnetyczne promieniowanie tła

Promieniowanie reliktowe nie ma żadnego związku z temperaturą wczesnego Wszechświata, jak to jest obecnie interpretowane. Jest sposobem w jakim widzimy nasz nadwszechświat. Odbieramy  promieniowanie będące skutkiem przenikania materii i  ciemnej materii z nadwszechświata do Wszechświata.

A tymczasem promieniowanie reliktowe nazywane jest także promieniowaniem tła, promieniowaniem szczątkowym, promieniowaniem resztkowym.

 Epopeja promieniowania tła miała swój początek kiedy to amerykański fizyk jądrowy i astrofizyk, pochodzenia rosyjskiego George Anthony Gamow wysunął przypuszczenie, że wczesny Wszechświat był wypełniony gorącym gazem swobodnych neutronów. W 1948 roku Gamow uświadomił sobie, że jego gorące neutrony doprowadziłyby do wytworzenia fotonów o widmie ciała doskonale czarnego. Nie oznacza to, że Gamow, jak i jego współpracownicy Alpher i Herman byli przekonani, że fotony te przetrwałyby w dzisiejszym Wszechświecie jako szczególnego rodzaju widmo. Jednak ziarno, z którego wyrosła z czasem "epopeja" zwana promieniowaniem reliktowym, zostało posiane.

  Wiosną 1964 roku Penzias i Wilson przez przypadek zarejestrowali pierwsze sygnały syczącego szumu radiowego, który jak się obecnie sądzi jest efektem gwałtownej eksplozji Wszechświata. Jednorodność i izotropowość tego promieniowania wydawała się wówczas (w latach 50-tych i 60-tych) bezdyskusyjna i oczywista. Astronomowie i astrofizycy z tamtych lat, poszukiwali źródła fluktuacji temperaturowych we wczesnym Wszechświecie. Już jednak pod koniec lat 60-tych i w latach 70-tych niektórzy fizycy, podchodząc do tego zagadnienia od strony fizyki statystycznej wypowiadali pogląd, że Wczesny Wszechświat miał prawo do odrobiny indywidualności i powinny istnieć fluktuacje temperaturowe w rozkładzie tego promieniowania, oszacowali je na niecały 1 K.

     Poźniejsze obserwacje naziemne z lat 70-tych i 80-tych wskazywały jednak na jednorodność i izotropowość z dokładnością poniżej 0.001 K. I to dopiero stało się nieco zagadkowe. Obserwacje satelity COBE pokazały, że fluktuacje są, ale na poziomie poniżej 0.0001 K. Oczekiwanych niejednorodności w promieniowaniu tła do dzisiaj nie znaleziono. Jest to jeden z problemów współczesnej kosmologii nazywany "Problemem daleko posuniętej jednorodności promieniowania reliktowego".


     Dzisiejszy obszar dostępnego naszym obserwacjom horyzontu składał się kiedyś (np. w erze dominacji promieniowania, lub jeszcze dawniej - przy założeniu że był Wielki Wybuch) z wielu przyczynowo rozłącznych podobszarów. Zastanawiająca jest więc w tej sytuacji tak duża jednorodność temperaturowa promieniowania reliktowego obserwowana obecnie. W jaki sposób wyrównały się temperatury (i to z dokładnością do 0.0001 K) w obszarach, które kiedyś były przyczynowo rozłączne. Trudno bowiem uwierzyć w samoistną jednorodność tej temperatury i brak jakichkolwiek większych fluktuacji w całym wczesnym Wszechświecie.

I tu właśnie pewną propozycją staje się koncepcja "inflacyjnej fazy ekspansji", w czasie której, tempo ekspansji wzajemnych odległości narastało szybciej, niż tempo ekspansji rozprzestrzeniania się obszaru (zbioru) zdarzeń, które mogą być przyczynowo powiązane. Wówczas, to co dziś obserwujemy jako nasz horyzont kosmologiczny pochodziłoby z "inflacyjnego” rozdęcia dawnego niewielkiego obszaru przyczynowo powiązanego.
Aby powyższe sformułowanie miało sens, to w fazie inflacyjnej tempo narastania wzajemnych odległości musiałoby przekroczyć prędkość światła i to wielokrotnie. Jak to możliwe? Otóż zgodnie z teorią względności żadna cząstka nie jest w stanie wygrać wyścigu z promieniem świetlnym. Natomiast jeżeli odległości między cząstkami wzrastają w związku z rozciąganiem się przestrzeni między nimi , to teoria względności nie nakłada żadnych ograniczeń na prędkość takiego rozciągania.
Poprzednia strona: Ewolucja wszechświata